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The implementation of the HONDO program on the Loosely Coupled Array 
of Processors (LCAP) parallel computer system assembled in our laboratory 
is presented. We discuss a general strategy used to maintain a high level of 
compatibility between the serial version and the parallel version of the code. 
We report the implementation of energy~gradient calculation for SCF 
wavefunctions. The integral and integral derivative programs display high 
parallel efficiency, and so does the SCF part in the case of very large basis sets, 
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1. Introduction 

For some years now SCE energies and energy gradients of small and medium-sized 
molecules have been routinely calculated in many laboratories. The availability 
of efficient, reliable, "black-box" computer programs [ 1 ] and increasing computer 
power have enabled increasingly complex molecular systems to be studied compu- 
tationally. At the same time, the molecular scientist's expectations have increased, 
and the demand for computing facilities is greater than ever. Fortunately, the 
CPU intensive parts of many scientific applications programs in general, and 
SCE energy and energy gradient programs in particular, are well suited to vector 
and parallel computer architectures. 

Recently, two powerful parallel computer systems based on a loosely coupled 
array of processors (LCAP) have been assembled in this laboratory [2-4]. The 
first of these systems, LCAP1, presently comprises an IBM 3081 front-end com- 
puter and ten FPS-164 attached processors and runs under the VM operating 
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system. The second system, LCAP2, consists of an IBM 3084 and ten FPS-264 
attached processors and runs under the MVS operating system. Each system 
supports two modes of parallel execution. Most commonly, an IBM processor 
coordinates execution of a single job on two or more of the attached processors. 
Inboard parallelism, whereby a single job makes use of the two processors of 
the 3081 or the four processors of the 3084, is also available. Even at this early 
stage the general applicability of LCAP has been amply demonstrated [4-10]. 
Many scientific and engineering applications programs have been migrated from 
sequential to parallel, and a wide range of computationally demanding problems 
have been/are being tackled with the aid of LCAP. The applicability of the system 
is expected to increase still further with the addition of large shared memories 
and other facilities which assist interprocessor communication [4]. 

The first major success of the LCAP experiment was the migration from sequential 
to parallel of th e integral and SCF modules of the quantum chemical program 
IBMOL [2, 3, 5]. Through this work it was possible, for example, to make a 
detailed ab initio study of proton tunneling in DNA base pairs [4-7] an investiga- 
tion for which supercomputer performance was imperative. 

In this report we describe the parallelization of the integral, SCF and integral 
derivative modules of the HONDO program [11]. This work extends that of 
Clementi et al. [4,5] by providing parallel computation of not only the SCF 
energy and wave function, but also the energy gradient. The importance and 
value of the energy gradient have been appreciated for some time [12]. The 
gradient is necessary for efficient location of stationary points on potential energy 
surfaces, for the determination of reaction pathways, and it can be used to obtain 
force constants and vibrational frequencies by a finite differencing procedure. If 
sp basis sets are used, the times for SCF energy and gradient evaluation are 
comparable [13]. When polarization functions are included in the basis set the 
computation of the gradient usually takes substantially longer than energy evalu- 
ation [13]. 

The strategy used in the parallelization of the IBMOL integral program evolved 
very naturally from the loops over nuclear centres which drive the sequential 
code. Several other integral computation codes, for example those in the HONDO 
[11] and the GAUSSIAN 82 programs [14], are based on the so-called shell 
structure. A shell comprises all the basis functions located on a given centre 
having the same contraction coefficients and exponents. Integral programs using 
the shell structure are also easily adapted for parallel execution by distributing 
the loop over shell blocks among the processing units. Compared with the "centre 
approach", the "shell approach" leads to parallelism with a finer but more uneven 
grain. This'is because high angular momentum integrals are more CPU demanding 
than low angular momentum integrals and high angular momentum shells lead 
to many more integrals than low angular momentum shells. It is possible, there- 
fore, that parallelization of an integral program based on the shell approach may 
produce a well balanced load as far as the CPU time is concerned, even though 
the numbers of integrals evaluated on the different processors may not be equal. 
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Clearly, a gross imbalance in the numbers of integrals on the different processors 
will lead to poor load balancing in the SCF program. 

The most time consuming step in the calculation of the derivatives of the SCF 
energy with respect to the nuclear coordinates is the evaluation of the derivatives 
of the two-electron integrals with respect to nuclear coordinates. Here too the 
shell structure dictates the computational strategy in a manner very similar to 
the integral program. Each ilategral derivative is evaluated and multiplied by an 
appropriate density factor, and the result is added to the energy gradient vector. 
In addition to the basis function parameters, the derivative programs need only 
the density matrix. It is clear, then, that the gradient program should also be 
easily parallelized and that the data transfer overhead is minimal. 

The plan of this report is as follows. Section 2 contains a brief summary of the 
working equations of the program. Section 3 describes a programming technique 
we used for the parallel implementation of HONDO, a program with over 75 000 
lines of FORTRAN code. This technique made it very easy to parallelize the 
code and to maintain exact compatability between serial and parallel versions. 
This programming technique should prove extremely useful and convenient for 
handling large FORTRAN codes. In Sect. 4 we present and discuss benchmark 
performances for calculations on a range of molecular systems. 

2. Equations for the evaluation of the SCF energy and energy gradient 

Detailed discussion and derivation of the equations used for the calculation of 
SCF energies and energy gradients can be found elsewhere [12, 15-19]. For future 
reference and to define more clearly our computational task we give a brief 
summary here. We restrict our attention to SCF wave functions for closed-shell 
systems. The theory for more general SCF wave functions is not substantially 
more complex and excellent discussions are given elsewhere [18, 19]. Throughout 
this section IX, v, a, and o- are used to represent atomic basis functions and i and 
j to label molecular orbitals. 

For closed-shell molecular systems the SCF energy is given by 

E = E D,~(ixlhl~')+ ! E D~Dp,~[2(ixv/po-)-(ixp/vo-)]+ VNuc (1) 

In this expression VNt~c is the nuclear repulsion energy, the density matrix 
elements D~,~ are defined in terms of the orbital coefficients by 

o c c  

D.~ = Z C,.,C~, (2) 
i 

and the (IX/h~ v) and (ixv/po-) are respectively the one- and two-electron integrals. 
The molecular orbital coefficients are defined iteratively by diagonalizing the 
Fock matrix/7, the elements of which are given in the basis functions representa- 
tion by 

F,,,,,= (Ix/h/v)+ E Dt, o-[2(ixv/P~176 (3) 
I J . v p o  " 
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The computationally demanding steps in the calculation of the SCF energy are 
the evaluation of the two-electron integrals, typically there are several million of 
these, and the contraction of these integrals with density matrix elements to form 
the Fock matrix. The diagonalization of the Fock matrix may also require a 
significant computation time. Once the SCF procedure has converged the deriva- 
tives of Eq. (1) with respect to nuclear coordinates can be calculated from 

aE a +1 a 
a--~ = ~ D .~ -~q ( IZ / h / ~ ) 2 . ~,. D "~ D ~ [ 2 ( Ix v / p~ ) - ( ~ p / ~'~ ) ] 

+ ~, W~, ~q S~,. (4/ 

The elements of the energy-weighted density matrix (or Lagrangian) W are given 
by 

o c c  

i 

and S~ are the overlap matrix elements. The orbital energies ei are the eigenvalues 
of the Fock operator matrix F. By far the most time consuming step in the 
evaluation of Eq. (4) is the computation of the derivatives of the two-electron 
integrals. 

3. Parallelization 

We start this section by describing our general approach to parallelization. 
Following this we make a few remarks on how we have migrated the individual 
modules from sequential to parallel. 

So far we have prepared two parallel versions of the program, one for LCAP1 
and one for LCAP2. In both versions of the program the processing units are 
the FPS-164s (LCAP1) or FPS-264s (LCAP2). Versions of the program which 
execute in parallel on the different processing units of the multiprocessor 3081 
and 3084 computers are in preparation. Although we talk of different versions 
of the program, there is in fact only one version of the code; there are differences 
in how one runs the program under the two operating systems. In the following 
the IBM front-end computers will be referred to as the host or master and the 
FPS machines as APs (attached processors or attached array processors). In our 
work we have benefitted from the use of the precompiler recently developed in 
this laboratory [20]. The precompiler greatly simplifies the development of parallel 
programs. 

A. General strategy 
Like many other applications programs, HONDO begins with some initialization 
followed by calls to several CPU intensivesubroutines (e.g. the integral, SCF, 
and integral derivative programs). These subroutines are, of course, the parts of 
the code one wishes to run in parallel. Obviously, one may attempt to parallelize 
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CALLLCPSET 

CALL INTGRL CALL INTGRL 

CALLFOCK CALLFOCK 

Cs ~NTDER CALL ~NTDER 

CALLLCPEND 

Fig. 1. Original and present serial code (schematic) 

the code by inserting the precompiler directives and other code needed for parallel 
execution in the sequential code. While this approach can undoubtedly be made 
to work, we believe that another approach is more desirable, particularly for 
large programs such as HONDO.  

Our first step was to make some modifications to the sequential program, but 
these were very minor changes and do not in any significant way affect how the 
program runs; the modified sequential program runs alone on the host machine 
exactly as the original sequential program and is shown in Fig. 1-3. The changes 
made to the sequential code were the addition of two short subroutines called 
LCPSET and LCPEND, the addition of a common block called LCAPID into 
subroutines INTGRL, FOCK, and INTDER, and the insertion of a conditional 
if statement in the loops over shell blocks in INTGRL and INTDER. Since the 
new sequential program has all the facilities of the original sequential program, 
the latter has been discarded, and from now on whenever we refer to the sequential 
program we imply this slightly modified version. 

The next stage in the parallelization was to write new subroutines called LCPSET, 
LCPEND, INTGRL, FOCK, and INTDER. The.new versions of LCPSET and 
LCPEND respectively initialize and terminate communication between master 

Fig. 2. Subroutines LCPSET and LCPEND as in present serial code 

SUBROUTINE LCPSET 
IMPLICIT REAL*8 (A-H,O-Z) 
COMMON/LCAPID/IAP,NAP 
IAP = 1 
NAP = 1 
RETURN 
END 

SUBROUTINE LCPEND 
IMPLICIT REAL*8 (A-H,O-Z) 
RETURN 
END 
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SUBROUTINE INTXXX SUBROUTINE INTXXX 
COMMON/LCAPID/ IAP ,NAP 
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I J K L S H  = 0 
DO 9000 II = 1 ,NSHELL 

I J K L S H  = 0 
DO 9000 II = 1 ,NSHELL 

DO" 8000 J J  = l ,II  

DO" 7000 K K  = 1,II 

DO" 8000 J J  = 1,II 

dO 7000 K K  = 1,II 

M A X L L  = K K  
IF(KK.EQ.II)  MAXLL = J J  
DO 6000 LL = 1,MAXLL 

M/~XLL = K K  
IF(KK.EQ.II)  MAXLL = J J  
DO 6000 LL = 1,MAXLL 

I J K L S H = I J K L S H + I  I J K L S H = I J K L S H + I  
I F ( M O D ( I J K L S H , N A P ) + I . N E . I A P ) G O  TO6000  

6000 C()NTINUE 6000 C()NTINUE 
7000 CONTINUE 7000 CONTINUE 
8000 CONTINUE 8000 CONTINUE 
9000 CONTINUE 9000 CONTINUE 

RETURN RETURN 
END END 

Fig. 3. The loop over shells in the original and present serial codes (subroutines INTGRL and 
I N T D E R )  

and slaves. The new versions of INTGRL, FOCK, and INTDER are short "fake" 
subroutines which contain precompiler directives and a few other lines of code 
needed to enable subroutines INTGRL, FOCK, and INTDER to be run in 
parallel. Among other things, the precompiler directives are translated into calls 
to APROUTINEs. The APROUTINEs also consist only of a few lines of code. 
They execute on the APs, define the data to be transferred between master and 
APs, and call AP Fortran versions of subroutines INTGRL, FOCK, and INTDER. 
In summary, the parallel program comprises 

(i) the entire sequential code 
(ii) the new subroutines LCPSET, LCPEND, INTGRL, FOCK, and INTDER 

(iii) the APROUTINEs APINT, APFCK, and APDER 
(iv) AP Fortran versions of subroutines INTGRL, FOCK, and INTDER 

and is shown in Fig. 4. It should be mentioned that INTGRL, FOCK, and 
INTDER are not the names of actual subroutines. Rather, they are single names 
denoting one of several possible driver routines for integral evaluation (JKINT 
or PKINT), Fock matrix formation (HSTAR, HSTARU, HSTARO), or integral 
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SERIAL CODE PRECOMPILERINPUT FILE 
HNDM FORTRAN 

ATTACHED PROCESSOR 
(FPS-164or-264) 

PRECOMPILERINPUT FILE 
HNDA FORTRAN 
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CALL LCPSET SUBROUTINE LCPSET 
C initialize/LCAP$M/ 
C Begin parallel 
C processing 
C$ START 

RETURN 
END 

CALL INTGRL SUBROUTINE INTGRL APROUTINE APINT 
C$ EXECUTE ON ALL, CALL INTGRL 
C$ 1 USING IAP:APINT RETURN 

RETURN END 
END 

CALL FOCK SUBROUTINE FOCK APROUTINE APFCK(F) 
C$ EXECUTE ON ALL, CALL FOCK 
C$ 1 USING IAP:APFCK(F) RETURN 
C$ ADDING F END 

RETURN 
END 

CALL 1NTDER SUBROUTINE INTDER APROUTINE APDER(DE) 
C$ EXECUTE ON ALL, CALL INTDER 
C$ 1 USING IAP:APDER(DE) RETUR 
C$ ADDING DE END 

RETURN 
END 

CALL LCPEND SUBROUTINE LCPEND 
C Terminate parallel 
C processing 
C$ FINISH 

RETURN 
END 

Fig. 4. Structure of the parallel program 

derivative computation (JKDER). In the same way, the names of the 
APROUTINEs (APINT, APFCK, and APDER) are purely symbolic. 

The success of  our scheme depends on the fact that it is possible to load more 
than one subroutine with the same name; if two or more versions of  a subroutine 
are loaded all but the first version are ignored; that is, to run the parallel program 
we load the routines listed in (ii) before the sequential object code. 

Our strategy has several attractive features, e.g., simplicity, ease of  debugging 
during parallelization, the fact that only a very small portion of  the code need 
be submitted for precompilation (the routines listed in (ii) and (iii)), and compata- 
bility with the sequential program (albeit a sequential program primed for 
parallelization !) 
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B. The two-electron integral program 

The HONDO program employs two methods of two-electron integral evaluation, 
the rotating axis method of Pople and Hehre [21] first implemented in the 
GAUSSIAN 70 program [22] and restricted to basis sets containing s and p 
functions, and the more general method of Rys quadrature developed by Dupuis, 
Rys, and King [23-27]. 

In both the Rys and GAUSSIAN 70 schemes the integrals are evaluated most 
efficiently by dividing the basis functions into shells and looping over unique 
shell blocks. The integrals of one shell block may be evaluated independently 
from those of another shell block and so the integral programs were easily 
paraUelized by distributing the loop over shell blocks among the different APs. 
This is accomplished in the following way. Suppose that there are NAP APs 
labelled by IAP and that the unique shell blocks are labelled by IJKLSH. Each 
AP has a loop over all shell blocks (Fig. 3) but only evaluates the IJKLSHth 
shell block if 

MOD(IJKLSH, NAP) + 1 =IAP. (4) 

Evidently, the same approach could be achieved by having the loop on the host, 
but this would necessitate much more host-slave communication with consequent 
loss of efficiency. The fact that all the APs have the entire four-fold loop over 
shells introduces a small overhead which cannot be seen in the timing data. The 
only difference between the AP and sequential code is the change needed to pack 
the integral labels into 64 rather than 32 bit words. This change has nothing to 
do with the parallelization and would be necessary if one were writing an FPS-164 
version of the sequential code; it is necessary solely because of the different 
integer word lengths of FPS and IBM machines. 

C. The SCF program 

There are two computationally demanding tasks in the SCF procedure, the 
manipulation of the two-electron integrals to form the Fock matrices and the 
diagonalization of these matrices. At the present stage in our work only the former 
process is executed in parallel. Intuitively this is reasonable since the Fock matrix 
formation is an n 4 process while the diagonalization time increases only as n 3 
(where n is the number of basis functions). However, like Clementi et al. [4, 5], 
we have found that the diagonalization and other sequential code may account 
for a significant fraction of the total execution time, with consequent decrease 
in efficiency as the number of APs is increased (see Sect. 4). 

To parallelize the Fock matrix formation we used the same straightforward 
strategy as used in the parallelization of this part of the IBMOL program [4, 5]. 
That is, each of the APs evaluates the contribution of its own two-electron integral 
list to the total Fock matrix. The latter is obtained by adding together the NAP 
contributions. Apart from the modifications needed to unpack the integral labels 
from a 64 rather than a 32 bit word, the AP Fock matrix formation code is exactly 
the same as in the sequential program. 
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Table 1. Execution times, speedup factors, and eflicieneies for the integral, SCF, and integral derivative 
programs in the calculations on CROWN compound (LCAP1, 3081 host; LCAP2, 3084 host)" 

Integral SCF Integral derivative 

NAP T (see) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup. Eft. 

1 14411 2983 15181 
3 4901 2.94 98.01 1255 2.38 79.24 5332 2.85 94.90 

(1396) (1102) (1454) 
6 2557 5.64 93.93 787 3.79 63.13 2763 5.49 91.58 

LCAP2 times given in parentheses 

D. The two-electron integral derivative program 

The H O N D O  program evaluates two-electron integral derivatives by two methods,  
the Rys quadra ture  me thod  [23-27] and the method  of  Schlegel [28], the latter 
restricted to basis sets containing s and p functions and implemented in the 
G A U S S I A N  80 [29] and G A U S S I A N  82 [14] programs.  Just like the integral 
programs,  the integral derivative program,  J K D E R ,  loops over shell blocks, and 
the code may  be easily parallelized by distributing this loop among  the APs 
exactly as we have described for  the integral programs.  

Generally,  the integral derivatives at a given geometry  are needed only once. 
Accordingly,  they need not  be stored and may  be summed directly into the 
gradient  vector.  Each  AP  evaluates the contr ibut ion o f  its own set o f  shell blocks 
to the skeleton gradient  and the N A P  contributions are added  together  and 
symmetr ized [26, 27] on the host. It was not  necessary to make any changes to 
the integral derivative code for  execution on the APs. 

4. Performance of the parallel program 

To assess the efficiency o f  the parallel p rogram we have carried out  several 
calculations under  benchmark  conditions. The systems selected for  s tudy range 
f rom a small molecule with a near  Har t r ee -Fock  basis set to large molecules with 

Table 2. Execution times, speedup factors, and efficiencies for the integral, SCF, and integral derivative 
programs in the calculations on VALINE (LCAP1, 3081 host; LCAP2, 3084 host) a 

Integral SCF Integral derivative 

NAP T (see) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup+ Eft. 

1 3813 1490 5468 
(1106) (1348) (1509) 

3 1301 2.93 97.69 635 2.35 78.20 1845 2.96 98.78 
(387) (2 .86)  (95.26) (621) (2 .17)  (72.36) (532) (2,84) (94.55) 

6 671 5.68 94.74 407 3.66 61.03 985 5.55 92.53 

a LCAP2 times given in parentheses 
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Table 3. Execution times, speedup factors, and efficiencies for the integral, SCF, and integral derivative 
programs in the calculations on guanine (LCAP1, 3081 host) 

Integral SCF Integral derivative 

NAP T (sec) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup. Eft. 

1 1562 3694 1889 
2 792 1.97 98.59 2203 1.68 83.86 956 1.97 98.74 
4 413 3.78 94.47 1458 2.53 63.36 491 3.85 96.14 
6 308 5.07 84.46 1323 2.79 46.52 395 4.79 79.76 
8 220 7.08 88.53 1112 3.32 41.54 261 7.25 90.59 

Table 4. Execution times, speedup factors, and efficiencies for the integral, SCF, and integral derivative 
programs in the calculations on bicyclo(1,1,0)butane (LCAP1, 4381 host; LCAP2, 3084 host) a'b 

IntegraP SCF Integral derivative 

NAP T (sec) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup. Eft. 

1 1014 808 3665 
(263) (580) (1027) 

2 517 1.96 98.06 523 ~ 1.54 77.26 1843 1.99 99.42 
(138) (344) (521) 

4 268 3.79 94.65 374 2.16 54.03 933 3.93 98.23 
6 201 5.05 84.23 331 2.44 40.75 684 5.35 89.23 
8 147 6.88 88.97 313 2.58 32.23 478 7.66 95.71 

a The Rys quadrature method was used throughout 
b LCAP2 times given in parentheses 

Table 5. Execution times, speedup factors, and efficiencies for the integral, SCF, and integral derivative 
programs in the calculations on water molecule (LCAP1, 3081 host; LCAP2, 3084 host) a 

Integral SCF Integral derivative 

NAP T (see) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup. Eft. 

1 536 415 1371 
(155) (389) (399) 

2 274 1.95 97.67 246 1.68 84.28 699 1.96 98.06 
(78) (1.98) (99.36) (249) (1.56) (78.11) (204) (1.96) (97.79) 

3 196 2.72 90.98 198 2.10 69.94 487 2.82 93.91 
(67) (2.31) (77.11) (210) (1.85) (61.74) (152) (2.65) (87.50) 

4 147 3.65 91.36 164 2.53 63.22 359 3.82 95.42 
(54) (2.87) (71.76) (190) (2.04) (51.20) (116) (3.44) (86.00) 

5 123 4.35 87.12 157 2.65 53.05 305 4.50 90.04 
(50) (3.10) (62.00) (177) (2.19) (44.00) (103) (3.87) (77.48) 

6 110 4.84 80.77 135 3.08 51.38 264 5.18 86.41 

a LCAP2 times given in parentheses 
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Table 6. Execution times, speedup factors, and etficiencies for the integral, SCF, and integral derivative 
programs in the calculations on water dimer (LCAP1, 3081 host; LCAP2, 3084 host) a 

Integral SCF Integral derivative 

NAP T (see) Spdup. Eft. T (sec) Spdup. Eli. T (see) Spdup. Eft. 

1 6659 5533 29189 
(1900) (4658) (5769) 

2 3498 1.90 95.20 2943 1.88 93.99 14922 1.96 97.80 
(990) (1.92) (95.60) (2469)  (1.87) (94.32) (3043) (1.90) (94.79) 

3 2403 2.77 92.36 2084 2.65 88.49 10056 2.90 96.75 
4 1807 3.68 92.10 1612 3.43 85.77 7617 3.83 95.79 

(523) (3.63) (90.80) (1389) (3.43) (83.84) (3043) (3.71) (92.69) 
6 1270 5.24 87.38 1199 4.61 76.92 5171 5.64 94.07 

a LCAP2 times given in parentheses 

minimal basis sets. Our choice of systems should be sufficiently diverse to permit 
a reasonable assessment of the parallel program. The following six systems were 
used in the benchmarks: 

1. Valine with a minimal basis set, 
2. a crown ether with a minimal basis set, 
3. guanine with the double-zeta valence 3-21G basis set, 
4. bicyclo(1.1.0)butane with a double-zeta valence plus polarization basis set 
(C2~ symmetry), 
5. the water molecule with a near Hartree-Fock limit basis set (C2o symmetry), 
6. the water dimer with a near Hartree-Fock limit basis set (Cs symmetry). 

Full details of the basis sets, geometries, integral cutoffs, and convergence thresh- 
olds are available in a technical report [30]. Point group symmetry was exploited 
in the calculations on systems 4-6. Systems 1 and 2 are the 27 and 42 atom test 
cases used to test the efficiency of the parallel version of  the IBMOL program 
[5]. In Tables 1-6 we present data obtained in the benchmarks. The efficiencies 
and speedups were calculated from the following formulae [4]: 

100 (host elapsed time for I AP) 
efficiency - 

N A P  (host elapsed time for NAP APs) 

host elapsed time for 1 AP 
speedup - 

host elapsed time for NAP APs 

The general conclusions to be drawn from these results are that the integral and 
integral derivative programs execute in parallel with high efficiency but, largely 
because of  an appreciable sequential component, the SCF program is less efficient. 
Comparing the timings for the integral and integral derivative programs on LCAP1 
and LCAP2, we see that the execution times on LCAP2 are 3-4 times smaller 
than those on LCAP1, as anticipated [4]. For the SCF program, however, this is 
not the case. Although the FPS-264s execute floating point operations 3-4 times 
faster than the FPS-164s, the SCF program requires about the same time on 
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LCAP1 and LCAP2. This is because the SCF Program is I/O bound [31], and 
the I/O rate of the FPS-264 machine is 0nly about 20% better than for the 
FPS-164 for the FORTRAN I /O buffer size used in these runs. 

A matter of great importance in parallel processing is the load balancing. So far 
we have always obtained reasonably good load balancing. We have implemented 
a scheme by which it may be possible to improve load balancing still further. 
This is to reorder the shells so that in the loop over shell blocks one evaluates 
first of all the (ss/ss) integrals, then the (ss/sp) integrals, and so on. The same 
scheme can be used in the integral derivative program. The fact that the 6 AP 
calculations on guanine and bicyclo(1.1.0)butane are less efficient than the 8 AP 
calculations can be attributed to imperfect load balancing in the 6 AP calculations. 
These 6 AP calculations would probably benefit from the reordering scheme. 

6. Conclusion 

Through the present work we have successfully parallelized the integral, Fock 
matrix formation, and integral derivative modules of the HONDO program. Our 
general method of parallelization should be of use in parallelizing other large 
FORTRAN codes. The integral and integral derivative programs were parallelized 
by the same technique, namely the distribution of the loop over shell blocks 
among the APs. The resulting parallel codes have been shown to execute with 
high efficiency with both minimal and near Hartree-Fock basis sets on small and 
large molecules alike. It is a simple matter to parallelize the code for computation 
of the second derivatives of the integrals in the same way. For reasons we have 
discussed, the SCF program as a whole does not execute very efficiently in parallel. 

Recently, we have been using the parallel program to study some long chain 
polyenes and radicals. This work has involved geometry optimization and compu- 
tation of harmonic vibrational frequencies [32]. These calculations would have 
been nearly impossible with a serial code. 
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