
Theor Chim Acta (1987) 71:91-103

�9 Springer-Verlag 1987

Parallel computation of molecular energy gradients
on the loosely coupled array of processors (LCAP)

M. Dupuis and J. D. Watts

IBM Corporation, Data Systems Division, Scientific and Engineering Computations, Department
48B, Mail Stop 428, Kingston, NY 12401, USA

(Received May 7, revised August 27/Accepted September 29, 1986)

The implementation of the HONDO program on the Loosely Coupled Array
of Processors (LCAP) parallel computer system assembled in our laboratory
is presented. We discuss a general strategy used to maintain a high level of
compatibility between the serial version and the parallel version of the code.
We report the implementation of energy~gradient calculation for SCF
wavefunctions. The integral and integral derivative programs display high
parallel efficiency, and so does the SCF part in the case of very large basis sets,

Key words: Energy gradient calculation - - SCF wavefunction - - Parallel com-
puter system

1. Introduction

For some years now SCE energies and energy gradients of small and medium-sized
molecules have been routinely calculated in many laboratories. The availability
of efficient, reliable, "black-box" computer programs [1] and increasing computer
power have enabled increasingly complex molecular systems to be studied compu-
tationally. At the same time, the molecular scientist's expectations have increased,
and the demand for computing facilities is greater than ever. Fortunately, the
CPU intensive parts of many scientific applications programs in general, and
SCE energy and energy gradient programs in particular, are well suited to vector
and parallel computer architectures.

Recently, two powerful parallel computer systems based on a loosely coupled
array of processors (LCAP) have been assembled in this laboratory [2-4]. The
first of these systems, LCAP1, presently comprises an IBM 3081 front-end com-
puter and ten FPS-164 attached processors and runs under the VM operating

92 M. Dupuis and J. D. Watts

system. The second system, LCAP2, consists of an IBM 3084 and ten FPS-264
attached processors and runs under the MVS operating system. Each system
supports two modes of parallel execution. Most commonly, an IBM processor
coordinates execution of a single job on two or more of the attached processors.
Inboard parallelism, whereby a single job makes use of the two processors of
the 3081 or the four processors of the 3084, is also available. Even at this early
stage the general applicability of LCAP has been amply demonstrated [4-10].
Many scientific and engineering applications programs have been migrated from
sequential to parallel, and a wide range of computationally demanding problems
have been/are being tackled with the aid of LCAP. The applicability of the system
is expected to increase still further with the addition of large shared memories
and other facilities which assist interprocessor communication [4].

The first major success of the LCAP experiment was the migration from sequential
to parallel of th e integral and SCF modules of the quantum chemical program
IBMOL [2, 3, 5]. Through this work it was possible, for example, to make a
detailed ab initio study of proton tunneling in DNA base pairs [4-7] an investiga-
tion for which supercomputer performance was imperative.

In this report we describe the parallelization of the integral, SCF and integral
derivative modules of the HONDO program [11]. This work extends that of
Clementi et al. [4,5] by providing parallel computation of not only the SCF
energy and wave function, but also the energy gradient. The importance and
value of the energy gradient have been appreciated for some time [12]. The
gradient is necessary for efficient location of stationary points on potential energy
surfaces, for the determination of reaction pathways, and it can be used to obtain
force constants and vibrational frequencies by a finite differencing procedure. If
sp basis sets are used, the times for SCF energy and gradient evaluation are
comparable [13]. When polarization functions are included in the basis set the
computation of the gradient usually takes substantially longer than energy evalu-
ation [13].

The strategy used in the parallelization of the IBMOL integral program evolved
very naturally from the loops over nuclear centres which drive the sequential
code. Several other integral computation codes, for example those in the HONDO
[11] and the GAUSSIAN 82 programs [14], are based on the so-called shell
structure. A shell comprises all the basis functions located on a given centre
having the same contraction coefficients and exponents. Integral programs using
the shell structure are also easily adapted for parallel execution by distributing
the loop over shell blocks among the processing units. Compared with the "centre
approach", the "shell approach" leads to parallelism with a finer but more uneven
grain. This'is because high angular momentum integrals are more CPU demanding
than low angular momentum integrals and high angular momentum shells lead
to many more integrals than low angular momentum shells. It is possible, there-
fore, that parallelization of an integral program based on the shell approach may
produce a well balanced load as far as the CPU time is concerned, even though
the numbers of integrals evaluated on the different processors may not be equal.

Parallel computation of molecular energy gradients 93

Clearly, a gross imbalance in the numbers of integrals on the different processors
will lead to poor load balancing in the SCF program.

The most time consuming step in the calculation of the derivatives of the SCF
energy with respect to the nuclear coordinates is the evaluation of the derivatives
of the two-electron integrals with respect to nuclear coordinates. Here too the
shell structure dictates the computational strategy in a manner very similar to
the integral program. Each ilategral derivative is evaluated and multiplied by an
appropriate density factor, and the result is added to the energy gradient vector.
In addition to the basis function parameters, the derivative programs need only
the density matrix. It is clear, then, that the gradient program should also be
easily parallelized and that the data transfer overhead is minimal.

The plan of this report is as follows. Section 2 contains a brief summary of the
working equations of the program. Section 3 describes a programming technique
we used for the parallel implementation of HONDO, a program with over 75 000
lines of FORTRAN code. This technique made it very easy to parallelize the
code and to maintain exact compatability between serial and parallel versions.
This programming technique should prove extremely useful and convenient for
handling large FORTRAN codes. In Sect. 4 we present and discuss benchmark
performances for calculations on a range of molecular systems.

2. Equations for the evaluation of the SCF energy and energy gradient

Detailed discussion and derivation of the equations used for the calculation of
SCF energies and energy gradients can be found elsewhere [12, 15-19]. For future
reference and to define more clearly our computational task we give a brief
summary here. We restrict our attention to SCF wave functions for closed-shell
systems. The theory for more general SCF wave functions is not substantially
more complex and excellent discussions are given elsewhere [18, 19]. Throughout
this section IX, v, a, and o- are used to represent atomic basis functions and i and
j to label molecular orbitals.

For closed-shell molecular systems the SCF energy is given by

E = E D,~(ixlhl~')+ ! E D~Dp,~[2(ixv/po-)-(ixp/vo-)]+ VNuc (1)

In this expression VNt~c is the nuclear repulsion energy, the density matrix
elements D~,~ are defined in terms of the orbital coefficients by

o c c

D.~ = Z C,.,C~, (2)
i

and the (IX/h~ v) and (ixv/po-) are respectively the one- and two-electron integrals.
The molecular orbital coefficients are defined iteratively by diagonalizing the
Fock matrix/7, the elements of which are given in the basis functions representa-
tion by

F,,,,,= (Ix/h/v)+ E Dt, o-[2(ixv/P~176 (3)
I J . v p o "

94 M. Dupuis and J. D. Watts

The computationally demanding steps in the calculation of the SCF energy are
the evaluation of the two-electron integrals, typically there are several million of
these, and the contraction of these integrals with density matrix elements to form
the Fock matrix. The diagonalization of the Fock matrix may also require a
significant computation time. Once the SCF procedure has converged the deriva-
tives of Eq. (1) with respect to nuclear coordinates can be calculated from

aE a +1 a
a--~ = ~ D .~ -~q (IZ / h / ~) 2 . ~,. D "~ D ~ [2 (Ix v / p~) - (~ p / ~'~)]

+ ~, W~, ~q S~,. (4/

The elements of the energy-weighted density matrix (or Lagrangian) W are given
by

o c c

i

and S~ are the overlap matrix elements. The orbital energies ei are the eigenvalues
of the Fock operator matrix F. By far the most time consuming step in the
evaluation of Eq. (4) is the computation of the derivatives of the two-electron
integrals.

3. Parallelization

We start this section by describing our general approach to parallelization.
Following this we make a few remarks on how we have migrated the individual
modules from sequential to parallel.

So far we have prepared two parallel versions of the program, one for LCAP1
and one for LCAP2. In both versions of the program the processing units are
the FPS-164s (LCAP1) or FPS-264s (LCAP2). Versions of the program which
execute in parallel on the different processing units of the multiprocessor 3081
and 3084 computers are in preparation. Although we talk of different versions
of the program, there is in fact only one version of the code; there are differences
in how one runs the program under the two operating systems. In the following
the IBM front-end computers will be referred to as the host or master and the
FPS machines as APs (attached processors or attached array processors). In our
work we have benefitted from the use of the precompiler recently developed in
this laboratory [20]. The precompiler greatly simplifies the development of parallel
programs.

A. General strategy
Like many other applications programs, HONDO begins with some initialization
followed by calls to several CPU intensivesubroutines (e.g. the integral, SCF,
and integral derivative programs). These subroutines are, of course, the parts of
the code one wishes to run in parallel. Obviously, one may attempt to parallelize

Parallel computation of molecular energy gradients

ORIGINAL

95

PRESENT

CALLLCPSET

CALL INTGRL CALL INTGRL

CALLFOCK CALLFOCK

Cs ~NTDER CALL ~NTDER

CALLLCPEND

Fig. 1. Original and present serial code (schematic)

the code by inserting the precompiler directives and other code needed for parallel
execution in the sequential code. While this approach can undoubtedly be made
to work, we believe that another approach is more desirable, particularly for
large programs such as HONDO.

Our first step was to make some modifications to the sequential program, but
these were very minor changes and do not in any significant way affect how the
program runs; the modified sequential program runs alone on the host machine
exactly as the original sequential program and is shown in Fig. 1-3. The changes
made to the sequential code were the addition of two short subroutines called
LCPSET and LCPEND, the addition of a common block called LCAPID into
subroutines INTGRL, FOCK, and INTDER, and the insertion of a conditional
if statement in the loops over shell blocks in INTGRL and INTDER. Since the
new sequential program has all the facilities of the original sequential program,
the latter has been discarded, and from now on whenever we refer to the sequential
program we imply this slightly modified version.

The next stage in the parallelization was to write new subroutines called LCPSET,
LCPEND, INTGRL, FOCK, and INTDER. The.new versions of LCPSET and
LCPEND respectively initialize and terminate communication between master

Fig. 2. Subroutines LCPSET and LCPEND as in present serial code

SUBROUTINE LCPSET
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/LCAPID/IAP,NAP
IAP = 1
NAP = 1
RETURN
END

SUBROUTINE LCPEND
IMPLICIT REAL*8 (A-H,O-Z)
RETURN
END

96

SUBROUTINE INTXXX SUBROUTINE INTXXX
COMMON/LCAPID/ IAP ,NAP

M. Dupuis and J. D. Watts

I J K L S H = 0
DO 9000 II = 1 ,NSHELL

I J K L S H = 0
DO 9000 II = 1 ,NSHELL

DO" 8000 J J = l ,II

DO" 7000 K K = 1,II

DO" 8000 J J = 1,II

dO 7000 K K = 1,II

M A X L L = K K
IF(KK.EQ.II) MAXLL = J J
DO 6000 LL = 1,MAXLL

M/~XLL = K K
IF(KK.EQ.II) MAXLL = J J
DO 6000 LL = 1,MAXLL

I J K L S H = I J K L S H + I I J K L S H = I J K L S H + I
I F (M O D (I J K L S H , N A P) + I . N E . I A P) G O TO6000

6000 C()NTINUE 6000 C()NTINUE
7000 CONTINUE 7000 CONTINUE
8000 CONTINUE 8000 CONTINUE
9000 CONTINUE 9000 CONTINUE

RETURN RETURN
END END

Fig. 3. The loop over shells in the original and present serial codes (subroutines INTGRL and
I N T D E R)

and slaves. The new versions of INTGRL, FOCK, and INTDER are short "fake"
subroutines which contain precompiler directives and a few other lines of code
needed to enable subroutines INTGRL, FOCK, and INTDER to be run in
parallel. Among other things, the precompiler directives are translated into calls
to APROUTINEs. The APROUTINEs also consist only of a few lines of code.
They execute on the APs, define the data to be transferred between master and
APs, and call AP Fortran versions of subroutines INTGRL, FOCK, and INTDER.
In summary, the parallel program comprises

(i) the entire sequential code
(ii) the new subroutines LCPSET, LCPEND, INTGRL, FOCK, and INTDER

(iii) the APROUTINEs APINT, APFCK, and APDER
(iv) AP Fortran versions of subroutines INTGRL, FOCK, and INTDER

and is shown in Fig. 4. It should be mentioned that INTGRL, FOCK, and
INTDER are not the names of actual subroutines. Rather, they are single names
denoting one of several possible driver routines for integral evaluation (JKINT
or PKINT), Fock matrix formation (HSTAR, HSTARU, HSTARO), or integral

Parallelcomputation ofmolecularenergygradients

MASTER

SERIAL CODE PRECOMPILERINPUT FILE
HNDM FORTRAN

ATTACHED PROCESSOR
(FPS-164or-264)

PRECOMPILERINPUT FILE
HNDA FORTRAN

97

CALL LCPSET SUBROUTINE LCPSET
C initialize/LCAP$M/
C Begin parallel
C processing
C$ START

RETURN
END

CALL INTGRL SUBROUTINE INTGRL APROUTINE APINT
C$ EXECUTE ON ALL, CALL INTGRL
C$ 1 USING IAP:APINT RETURN

RETURN END
END

CALL FOCK SUBROUTINE FOCK APROUTINE APFCK(F)
C$ EXECUTE ON ALL, CALL FOCK
C$ 1 USING IAP:APFCK(F) RETURN
C$ ADDING F END

RETURN
END

CALL 1NTDER SUBROUTINE INTDER APROUTINE APDER(DE)
C$ EXECUTE ON ALL, CALL INTDER
C$ 1 USING IAP:APDER(DE) RETUR
C$ ADDING DE END

RETURN
END

CALL LCPEND SUBROUTINE LCPEND
C Terminate parallel
C processing
C$ FINISH

RETURN
END

Fig. 4. Structure of the parallel program

derivative computation (JKDER). In the same way, the names of the
APROUTINEs (APINT, APFCK, and APDER) are purely symbolic.

The success of our scheme depends on the fact that it is possible to load more
than one subroutine with the same name; if two or more versions of a subroutine
are loaded all but the first version are ignored; that is, to run the parallel program
we load the routines listed in (ii) before the sequential object code.

Our strategy has several attractive features, e.g., simplicity, ease of debugging
during parallelization, the fact that only a very small portion of the code need
be submitted for precompilation (the routines listed in (ii) and (iii)), and compata-
bility with the sequential program (albeit a sequential program primed for
parallelization !)

98 M. Dupuis and J. D. Watts

B. The two-electron integral program

The HONDO program employs two methods of two-electron integral evaluation,
the rotating axis method of Pople and Hehre [21] first implemented in the
GAUSSIAN 70 program [22] and restricted to basis sets containing s and p
functions, and the more general method of Rys quadrature developed by Dupuis,
Rys, and King [23-27].

In both the Rys and GAUSSIAN 70 schemes the integrals are evaluated most
efficiently by dividing the basis functions into shells and looping over unique
shell blocks. The integrals of one shell block may be evaluated independently
from those of another shell block and so the integral programs were easily
paraUelized by distributing the loop over shell blocks among the different APs.
This is accomplished in the following way. Suppose that there are NAP APs
labelled by IAP and that the unique shell blocks are labelled by IJKLSH. Each
AP has a loop over all shell blocks (Fig. 3) but only evaluates the IJKLSHth
shell block if

MOD(IJKLSH, NAP) + 1 =IAP. (4)

Evidently, the same approach could be achieved by having the loop on the host,
but this would necessitate much more host-slave communication with consequent
loss of efficiency. The fact that all the APs have the entire four-fold loop over
shells introduces a small overhead which cannot be seen in the timing data. The
only difference between the AP and sequential code is the change needed to pack
the integral labels into 64 rather than 32 bit words. This change has nothing to
do with the parallelization and would be necessary if one were writing an FPS-164
version of the sequential code; it is necessary solely because of the different
integer word lengths of FPS and IBM machines.

C. The SCF program

There are two computationally demanding tasks in the SCF procedure, the
manipulation of the two-electron integrals to form the Fock matrices and the
diagonalization of these matrices. At the present stage in our work only the former
process is executed in parallel. Intuitively this is reasonable since the Fock matrix
formation is an n 4 process while the diagonalization time increases only as n 3
(where n is the number of basis functions). However, like Clementi et al. [4, 5],
we have found that the diagonalization and other sequential code may account
for a significant fraction of the total execution time, with consequent decrease
in efficiency as the number of APs is increased (see Sect. 4).

To parallelize the Fock matrix formation we used the same straightforward
strategy as used in the parallelization of this part of the IBMOL program [4, 5].
That is, each of the APs evaluates the contribution of its own two-electron integral
list to the total Fock matrix. The latter is obtained by adding together the NAP
contributions. Apart from the modifications needed to unpack the integral labels
from a 64 rather than a 32 bit word, the AP Fock matrix formation code is exactly
the same as in the sequential program.

Parallel computation of molecular energy gradients 99

Table 1. Execution times, speedup factors, and eflicieneies for the integral, SCF, and integral derivative
programs in the calculations on CROWN compound (LCAP1, 3081 host; LCAP2, 3084 host)"

Integral SCF Integral derivative

NAP T (see) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup. Eft.

1 14411 2983 15181
3 4901 2.94 98.01 1255 2.38 79.24 5332 2.85 94.90

(1396) (1102) (1454)
6 2557 5.64 93.93 787 3.79 63.13 2763 5.49 91.58

LCAP2 times given in parentheses

D. The two-electron integral derivative program

The H O N D O program evaluates two-electron integral derivatives by two methods,
the Rys quadra ture me thod [23-27] and the method of Schlegel [28], the latter
restricted to basis sets containing s and p functions and implemented in the
G A U S S I A N 80 [29] and G A U S S I A N 82 [14] programs. Just like the integral
programs, the integral derivative program, J K D E R , loops over shell blocks, and
the code may be easily parallelized by distributing this loop among the APs
exactly as we have described for the integral programs.

Generally, the integral derivatives at a given geometry are needed only once.
Accordingly, they need not be stored and may be summed directly into the
gradient vector. Each AP evaluates the contr ibut ion o f its own set o f shell blocks
to the skeleton gradient and the N A P contributions are added together and
symmetr ized [26, 27] on the host. It was not necessary to make any changes to
the integral derivative code for execution on the APs.

4. Performance of the parallel program

To assess the efficiency o f the parallel p rogram we have carried out several
calculations under benchmark conditions. The systems selected for s tudy range
f rom a small molecule with a near Har t r ee -Fock basis set to large molecules with

Table 2. Execution times, speedup factors, and efficiencies for the integral, SCF, and integral derivative
programs in the calculations on VALINE (LCAP1, 3081 host; LCAP2, 3084 host) a

Integral SCF Integral derivative

NAP T (see) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup+ Eft.

1 3813 1490 5468
(1106) (1348) (1509)

3 1301 2.93 97.69 635 2.35 78.20 1845 2.96 98.78
(387) (2 .86) (95.26) (621) (2 .17) (72.36) (532) (2,84) (94.55)

6 671 5.68 94.74 407 3.66 61.03 985 5.55 92.53

a LCAP2 times given in parentheses

100 M. Dupuis and J. D. Watts

Table 3. Execution times, speedup factors, and efficiencies for the integral, SCF, and integral derivative
programs in the calculations on guanine (LCAP1, 3081 host)

Integral SCF Integral derivative

NAP T (sec) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup. Eft.

1 1562 3694 1889
2 792 1.97 98.59 2203 1.68 83.86 956 1.97 98.74
4 413 3.78 94.47 1458 2.53 63.36 491 3.85 96.14
6 308 5.07 84.46 1323 2.79 46.52 395 4.79 79.76
8 220 7.08 88.53 1112 3.32 41.54 261 7.25 90.59

Table 4. Execution times, speedup factors, and efficiencies for the integral, SCF, and integral derivative
programs in the calculations on bicyclo(1,1,0)butane (LCAP1, 4381 host; LCAP2, 3084 host) a'b

IntegraP SCF Integral derivative

NAP T (sec) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup. Eft.

1 1014 808 3665
(263) (580) (1027)

2 517 1.96 98.06 523 ~ 1.54 77.26 1843 1.99 99.42
(138) (344) (521)

4 268 3.79 94.65 374 2.16 54.03 933 3.93 98.23
6 201 5.05 84.23 331 2.44 40.75 684 5.35 89.23
8 147 6.88 88.97 313 2.58 32.23 478 7.66 95.71

a The Rys quadrature method was used throughout
b LCAP2 times given in parentheses

Table 5. Execution times, speedup factors, and efficiencies for the integral, SCF, and integral derivative
programs in the calculations on water molecule (LCAP1, 3081 host; LCAP2, 3084 host) a

Integral SCF Integral derivative

NAP T (see) Spdup. Eft. T (see) Spdup. Eft. T (see) Spdup. Eft.

1 536 415 1371
(155) (389) (399)

2 274 1.95 97.67 246 1.68 84.28 699 1.96 98.06
(78) (1.98) (99.36) (249) (1.56) (78.11) (204) (1.96) (97.79)

3 196 2.72 90.98 198 2.10 69.94 487 2.82 93.91
(67) (2.31) (77.11) (210) (1.85) (61.74) (152) (2.65) (87.50)

4 147 3.65 91.36 164 2.53 63.22 359 3.82 95.42
(54) (2.87) (71.76) (190) (2.04) (51.20) (116) (3.44) (86.00)

5 123 4.35 87.12 157 2.65 53.05 305 4.50 90.04
(50) (3.10) (62.00) (177) (2.19) (44.00) (103) (3.87) (77.48)

6 110 4.84 80.77 135 3.08 51.38 264 5.18 86.41

a LCAP2 times given in parentheses

Parallel computation of molecular energy gradients 101

Table 6. Execution times, speedup factors, and etficiencies for the integral, SCF, and integral derivative
programs in the calculations on water dimer (LCAP1, 3081 host; LCAP2, 3084 host) a

Integral SCF Integral derivative

NAP T (see) Spdup. Eft. T (sec) Spdup. Eli. T (see) Spdup. Eft.

1 6659 5533 29189
(1900) (4658) (5769)

2 3498 1.90 95.20 2943 1.88 93.99 14922 1.96 97.80
(990) (1.92) (95.60) (2469) (1.87) (94.32) (3043) (1.90) (94.79)

3 2403 2.77 92.36 2084 2.65 88.49 10056 2.90 96.75
4 1807 3.68 92.10 1612 3.43 85.77 7617 3.83 95.79

(523) (3.63) (90.80) (1389) (3.43) (83.84) (3043) (3.71) (92.69)
6 1270 5.24 87.38 1199 4.61 76.92 5171 5.64 94.07

a LCAP2 times given in parentheses

minimal basis sets. Our choice of systems should be sufficiently diverse to permit
a reasonable assessment of the parallel program. The following six systems were
used in the benchmarks:

1. Valine with a minimal basis set,
2. a crown ether with a minimal basis set,
3. guanine with the double-zeta valence 3-21G basis set,
4. bicyclo(1.1.0)butane with a double-zeta valence plus polarization basis set
(C2~ symmetry),
5. the water molecule with a near Hartree-Fock limit basis set (C2o symmetry),
6. the water dimer with a near Hartree-Fock limit basis set (Cs symmetry).

Full details of the basis sets, geometries, integral cutoffs, and convergence thresh-
olds are available in a technical report [30]. Point group symmetry was exploited
in the calculations on systems 4-6. Systems 1 and 2 are the 27 and 42 atom test
cases used to test the efficiency of the parallel version of the IBMOL program
[5]. In Tables 1-6 we present data obtained in the benchmarks. The efficiencies
and speedups were calculated from the following formulae [4]:

100 (host elapsed time for I AP)
efficiency -

N A P (host elapsed time for NAP APs)

host elapsed time for 1 AP
speedup -

host elapsed time for NAP APs

The general conclusions to be drawn from these results are that the integral and
integral derivative programs execute in parallel with high efficiency but, largely
because of an appreciable sequential component, the SCF program is less efficient.
Comparing the timings for the integral and integral derivative programs on LCAP1
and LCAP2, we see that the execution times on LCAP2 are 3-4 times smaller
than those on LCAP1, as anticipated [4]. For the SCF program, however, this is
not the case. Although the FPS-264s execute floating point operations 3-4 times
faster than the FPS-164s, the SCF program requires about the same time on

102 M. Dupuis and J. D. Watts

LCAP1 and LCAP2. This is because the SCF Program is I/O bound [31], and
the I/O rate of the FPS-264 machine is 0nly about 20% better than for the
FPS-164 for the FORTRAN I /O buffer size used in these runs.

A matter of great importance in parallel processing is the load balancing. So far
we have always obtained reasonably good load balancing. We have implemented
a scheme by which it may be possible to improve load balancing still further.
This is to reorder the shells so that in the loop over shell blocks one evaluates
first of all the (ss/ss) integrals, then the (ss/sp) integrals, and so on. The same
scheme can be used in the integral derivative program. The fact that the 6 AP
calculations on guanine and bicyclo(1.1.0)butane are less efficient than the 8 AP
calculations can be attributed to imperfect load balancing in the 6 AP calculations.
These 6 AP calculations would probably benefit from the reordering scheme.

6. Conclusion

Through the present work we have successfully parallelized the integral, Fock
matrix formation, and integral derivative modules of the HONDO program. Our
general method of parallelization should be of use in parallelizing other large
FORTRAN codes. The integral and integral derivative programs were parallelized
by the same technique, namely the distribution of the loop over shell blocks
among the APs. The resulting parallel codes have been shown to execute with
high efficiency with both minimal and near Hartree-Fock basis sets on small and
large molecules alike. It is a simple matter to parallelize the code for computation
of the second derivatives of the integrals in the same way. For reasons we have
discussed, the SCF program as a whole does not execute very efficiently in parallel.

Recently, we have been using the parallel program to study some long chain
polyenes and radicals. This work has involved geometry optimization and compu-
tation of harmonic vibrational frequencies [32]. These calculations would have
been nearly impossible with a serial code.

References

1. Several such programs are available from the Quantum Chemistry Program Exchange (QCPE)
at the University of Indiana, Bloomington, Indiana, USA, for a fee

2. Corongiu G, Detrich JH (1984) IBM Technical Report, KGN-1, March 31
3. Corongiu G, Detrich JH (1985) IBM J Res Dev 29:422
4. Clementi E, Chin S, Logan D (1986) "Chaire Francqui" Lecture Series: Part 9, IBM Kingston.

See also Israeli Journal of Chemistry, in press
5. Clementi E, Corongiu G, Detrich JH, Khanmohammadbaigi H, Chin S, Domingo L, Laaksonen

A, Nguyen HL (1984) IBM Technical Report, KGN-2, May 20
6. Clementi E, Corongiu G, Detrich JH, Khanmohammadbaigi H, Chin S, Domingo L, Laaksonen

A, Nguyen HL (1984) In: Clementi E, Corongiu G, Sarma MH, Sarma RH (eds) Structure and
motion: membranes, nucleic acids, and proteins. Adenine Press, New York

7. Clementi E, Corongiu G, Detrich JH, Khanmohammadbaigi H, Chin S, Domingo L, Laaksonen
A, Nguyen HL (1985) Physica 131B:74

8. Clementi E (1985) J Phys Chem 89:4426 and references therein
9. Detrich JH, Corongiu G, Clementi E (1984) Int J Quantum Chem Symp 18:701

Parallel computation of molecular energy gradients 103

10. Detrich JH, Corongiu G, Clementi E (1984) Chem Phys Lett 112:426
11. Dupuis M, Spangler D, Wendoloski JJ (1980) NRCC Software Catalog., vol 1, Program No. QG01
12. Pulay P (1977) In: Schaefer HF III (ed) Applications of electronic structure theory. Plenum,

New York
13. Schlegel HB, Binkley JS, Pople JA (1984) J Chem Phys 80:1976
14. Binkley JS, Frisch M J, Raghavachari K, DeFrees DJ, Schlegel HB, Whiteside RA, Fluder G,

Seeger R, Pople JA (1983) GAUSSIAN 82, Release A, Camegie-Mellon University, Pittsburgh,
USA

15. Roothaan CCJ (1951) Rev Mod Phys 23:69
16. McWeeny R, Sutcliffe BT (1969) Methods of molecular quantum mechanics. Academic Press,

New York
17. Szabo A, Ostlund NS (1983) Modem quantum chemistry: an introduction to advanced electronic

structure theory. Macmillan, London
18. Goddard JD, Handy NC, Schaefer III HF (1979) J Chem Phys 71:1525
19. Bobrowicz FW, Goddard III WA (1977) In: Schaefer III HF (ed) Methods of electronic structure

theory. Plenum, New York
20. Chin S, Domingo L, Carnevali A, Caltabiano R, Detrich JH (1985) IBM Technical Report,

KGN-42, November 25
21. Pople JA, Hehre WJ (1978) J Comput Phys 27:161
22. Hehre WJ, Lathan WA, Ditchfield R, Newton MD, Pople JA (1970) GAUSSIAN 70, Program

236, QCPE, University of Indiana, Bloomington, Indiana
23. Dupuis M, Rys J, King HF (1976) J Chem Phys 65:111
24. King HF, Dupuis M (1976) J Comput Phys 21:144
25. Rys J, Dupuis M, King HF (1983) J Comput Chem 4:154
26. Dupuis M, King HF (1985) IBM Technical Report, KGN-26, August 26
27. Dupuis M, King HF (1986) In: Jorgensen P, Simons J, Reidel D (eds) Geometrical derivatives

of energy surfaces and molecular properties
28. Schlegel HB (1982) J Chem Phys 77:3676
29. Binkley JS, Whiteside RA, Krishnan R, Seeger R, DeFrees D J, Schlegel HB, Topiol S, Kahn

LR, Pople JA (1981) GAUSSIAN 80, QCPE 13:406
30. Watts JD, Dupuis M, Villar HO (1986) IBM Technical Report, KGN-78, August 29
31. Dupuis M, Watts JD (1986) IBM Technical Report, KGN-69, July 28
32. Villar HO, Dupuis M, Watts JD, Hurst GJB, Clementi E: to be published

